ریاضیات در بین مسلمانان

از دانشنامه‌ی اسلامی

نقش دَرهم‌آمیزنده ریاضیات اسلامى بین مکتب هاى ریاضى شرق و غرب (یعنی درهم آمیختن دانسته‌هاى ریاضیات هندسى با دیگر مفاهیم ریاضى طرح شده در یونان)، از ارزنده‌ترین دستاوردهاى ریاضیات اسلامى براى نوع بشر به حساب مى‌آید.

نقش مسلمانان در علم ریاضى

در جریان نهضت ترجمه، آثار بسیارى از ریاضى‌دانان یونانى به عربى برگردانده شد و به ‌سرعت ریاضى‌دانان اسلامى از سطوح دانسته‌هاى ریاضى‌دانان یونان گذشتند، بر آثار آنان شرح هاى بسیارى نوشتند و بسیارى از دانسته‌هاى آنان را توسعه بخشیدند. مهم‌ترین اثر ریاضى به زبان یونانى که در این دوران به عربى ترجمه شد و بر آن شرح هاى بسیارى نوشته شد، کتاب اصول نوشته اقلیدس بود.

اما این مهم‌ترین نقش ریاضى‌دانان مسلمان در تکوین دانش ریاضى نبود. نقش دَرهم‌آمیزنده ریاضیات اسلامى بین مکتب هاى ریاضى شرق و غرب، یعنى بین ریاضیات یونان و هند، از ارزنده‌ترین دستاوردهاى ریاضیات اسلامى براى نوع بشر به حساب مى‌آمد. این نقش بسیار مهم ریاضیات اسلامى بود که توانست دانسته‌هاى ریاضیات هندسى و از همه مهم‌تر، شیوه عددنویسى دهدهى را با دیگر مفاهیم ریاضى طرح شده در یونان در هم آمیزد و از آن صورت واحدى درآورد و به غرب ارائه دهد.

با آن که ریاضیات یونانى در چند شاخه، از جمله مثلثات و علم کره‌ها پیشرفت فراوانى کرده بود، اما نبود یک روش عددنویسى ساده مانع پیشرفت علم اعداد در یونان شده بود. به طور کلى دستاوردهاى ریاضى‌دانان اسلامى را در شاخه‌هاى گوناگون دانش ریاضیات چنین مى‌توان عنوان کرد: اصلاح دستگاه عددنویسى هندى با تکمیل حساب دستگاه اعشارى آن، از جمله ابداع کسرهاى اعشارى؛ به ‌وجود آوردن مفاهیم جدید در تئورى اعداد؛ به‌وجودآوردن علم جبر؛ کشفیات مهم و جدید در دانش مثلثات و نیز علم کره‌ها و ابداع روشهاى گوناگون براى یافتن پاسخ هاى عددى معادلات درجه دو و سه.

مسلمانان از طریق کتاب محمد بن موسى خوارزمى با نام «الجمع والتفریق بالحساب الهند» با شیوه عددنویسى هندى آشنا شدند. این کتاب خوارزمى کهن‌ترین کتابى است که درباره علم حساب در عالم اسلام نوشته شده است. امروزه فقط ترجمه لاتین آن باقى مانده است. نقش خوارزمى را از این دید نیز باید بررسى کرد که این کتاب نخستین کتاب حساب نیز هست که از عربى به لاتین ترجمه شد و مغرب زمین کنونى در علوم مربوط به ریاضیات و رایانه، براى نشان دادن هر روش معین در محاسبه پدیده‌ها، اسم خوارزمى را به شکل تحریف‌شده آن یعنى به صورت «الگوریتم» به آن اطلاق مى‌کند.

خوارزمى در پدیدآوردن دانش جبر نیز نقش فراوانى داشت. اگرچه پیش از دانشمندان اسلامى موضوع علم جبر در یونان وجود داشت و دانشمندان یونانى بسیارى همچون فیثاغورس، ارشمیدس و دیوفانتوس در آثار خود به حل مسائل جبرى نزدیک شده بودند، اما دانشمندان مسلمان با کاربرد منطقى و تنقیح آراى دانشمندان یونانى پایه‌گذار این علم به شمار مى‌آیند. بر این اساس، علم جبر در نزد دانشمندان اسلامى تعمیم اعمال علم حساب به اعداد و تحقیق در روابط حاکم بین اعداد به حساب آمد، با کاربرد حروف به ‌جاى اعداد. مهم‌ترین دستاورد علم جبر نیز بدست آوردن مقادیر مجهول به وسیله معادله‌مندکردن این مقادیر و حل این معادلات بود.

بى‌دلیل نیست که نخستین و یکى از مهم‌ترین آثار دانشمندان اسلامى و علم جبر، کتاب محمد بن موسى خوارزمى «الجبر والمقابله» نام دارد زیرا در این نام، روح کلى حاکم بر علم جبر نهفته است که در آن «جبر» بکار بردن یک جمله منفى در یک طرف معادله براى حل آن و «مقابله» استفاده از جملات مثبت در حل معادلات به حساب مى‌آید.

دانشمندان اسلامى جبر را صورتى علمى داده و آن را به ‌صورت یک علم و به روشى علمى مورد بررسى قرار داده‌اند. این دسته از ریاضى‌دانان اسلامى از خوارزمى آغاز و با دستاوردهاى خیام، ماهانى، ابوکامل شجاع‌ بن اسلم، ابوالوفاى بوزجانى، خجندى، ابوسهل کوهى و... ادامه پیدا مى‌کند.

طبقه بندى معادلات جبرى، به ‌ویژه معادلات درجه اول و دوم و سوم، یکى از مهم‌ترین گامهاى دانشمندان اسلامى براى منظم کردن علم جبر و تعبیر «علم» بخشیدن به آن است. به‌ویژه نقش خیام در حل معادلات درجه سوم، به ‌عنوان کسى که براى نخستین بار به تحقیق در حل این گونه معادلات پرداخت بسیار درخور توجه است. در عین حال، ریاضى‌دانان اسلامى نخستین کسانى نیز بودند که جبر را به علم هندسه وارد کردند و از طریق معادلات جبرى به حل مسائل هندسى پرداختند.

تأثیر و عمق نفوذ نقش ریاضیات اسلامى در تبیین دانش جبر در مغرب زمین، بیش از هر چیز بر اساس اطلاق این نام (جبر) در غرب پیداست. جبر در غرب، صورت لاتین‌ شده نام عربى آن، نامیده مى‌شود.

مدتى پس از خوارزمى، ابوالحسن احمد بن ابراهیم اقلیدسى، ریاضى‌دان دمشقى الاصل، کسرهاى اعشارى را در کتاب خود درباره ریاضیات هندسى، با نام الفصول فى الحساب الهندسى ابداع کرد. یکى دیگر از گامهاى بسیار مهم مسلمین در حوزه علم اعداد طرح اعداد منفى بود. براى نخستین بار در عالم اسلام ابوالوفا بوزجانى در بخش دوم از رساله بسیار مهم خود، کتاب «فی مایحتاج الیه‌ الکتّاب والعمّال من علم الحِساب» اعداد منفى را ابداع کرد. او براى نامیدن این اعداد از واژه «دِین» استفاده کرده است.

در دیگر بخش هاى دانش ریاضى، از جمله مثلثات و هندسه نیز دانشمندان اسلامى آراى گران‌بهایى از خود به یادگار گذاشتند. در این بخش ها، دانشمندان اسلامى افزون بر بسط روابط حاکم بر مثلثات یونانى، خود به یافته‌هاى جدیدى نیز رسیدند، یکى از این یافته‌ها در کتاب «شکل القطاع» از خواجه نصیرالدین طوسى متبلور مى‌شود.

در این کتاب، طوسى به ‌درستى و زیرکى از تقابل دو بخش از علم مثلثات سودجسته است، یکى نقش جدول هاى مثلثاتى در تبدیل زوایا و اندازه‌هاى زاویه‌هاى شکل هاى هندسى و دیگر، مفروضات برآمده از مثلثات یونانى. در تبیین شکلهاى هندسى، خواجه در شکل القطاع با استفاده از کوشش دانشمندان پیش از خود در بسط و گسترش جدول هاى مثلثاتى به تبیین بسیار دقیقى از روابط حاکم بر زوایا در اشکال هندسى پرداخته است.

نمونه برجسته این دقت و گسترش مثلثات، به‌ ویژه در حوزه علم کره‌ها که خواجه نصیر نیز چند بخش از کتاب شکل القطاع خود را بدان اختصاص داده، تبدیل مختصات هندسه سه بعدى به هندسه دو بعدى است. این کار به ‌ویژه در ساخت انواع اصطرلابها حایز اهمیت است.

ریاضى‌دانان مسلمان

دوره تاریخ ریاضیات اسلامى از سده دوم هجرى تاکنون، ریاضى‌دانان بسیارى را به تاریخ علم جهان هدیه داده است. سیاهه بزرگى از نام این افراد را علاوه بر محمد بن موسی خوارزمی و خواجه نصیرالدین طوسى مى‌توان عرضه کرد، از جمله:

  • احمد بن عبداللَّه مروزى، ملقب به «حبش حاسب»، صاحب کتاب «فى معرفةالکرة والعمل بها»؛
  • ابوالعباس فضل ‌بن حاتم نیریزى، صاحب کتاب مشهور «شرح اصول اقلیدس»؛
  • موسى‌ بن شاکر، یکى از سه برادرى که به «بنو موسى» مشهورند، صاحب کتاب «معرفة مساحةالاشکال البسیطة والکرویة»؛
  • ابوالحسن ثابت‌بن قرّه حرانى، که آثار متعددى در زمینه ریاضیات نوشته است؛ از جمله کتاب «فى الاعداد المتحابّة»؛
  • ابوالفتح محمد بن قاسم اصفهانى، صاحب کتاب «تلخیص المخروطات»؛
  • ابوجعفر محمد بن حسین صاغانى خراسانى، صاحب تفسیر «صدرالمقالة العاشرة من کتاب اقلیدس»،
  • ابوسعید احمد بن محمدبن عبدالجلیل سجزى، صاحب کتاب «فى مساحة الاکر بالاکر»؛
  • ابوالحسن على‌ بن احمد نسوى، صاحب کتاب «الاشباع فى شرح الشکل القطاع»؛
  • ابوحاتم مظفر بن اسماعیل اسفزارى، صاحب کتاب «اختصار فى اصول اقلیدس»؛
  • غیاث الدین جمشید کاشانى، پژوهشگر بسیار مهم و بزرگ و صاحب آثار متعدد از جمله «مفتاح الحساب» و «رساله محیطیه»؛
  • علاءالدین على‌ بن محمد سمرقندى، مشهور به ملا على قوشچى، صاحب «رساله محمدیه».

منابع

  • علی اکبر ولایتی، فرهنگ و تمدن اسلامى‌، ص ۳۵ تا ۳۷.
  • ابوالقاسم قربانى، زندگینامه ریاضیدانان دوره اسلامى، تهران، مرکز نشر دانشگاهى، ۱۳۶۵، ص ۲۴۶-۲۳۸.
  • همان، ص ۵۰۸-۴۸۶.